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1 Orthogonality and orthonormality

Definition 1.1 Two vectors u, v in an inner product space are said to be orthogonal if 〈u, v〉 = 0.
A set of vectors S ⊆ V is said to consist of mutually orthogonal vectors if 〈u, v〉 = 0 for all
u 6= v, u, v ∈ S. A set of S ⊆ V is said to be orthonormal if 〈u, v〉 = 0 for all u 6= v, u, v ∈ S
and ‖u‖ = 1 for all u ∈ S.

Proposition 1.2 A set S ⊆ V \ {0V} consisting of mutually orthogonal vectors is linearly inde-
pendent.

Proposition 1.3 (Gram-Schmidt orthogonalization) Given a finite set {v1, . . . , vn} of linearly
independent vectors, there exists a set of orthonormal vectors {w1, . . . , wn} such that

Span ({w1, . . . , wn}) = Span ({v1, . . . , vn}) .

Proof: By induction. The case with one vector is trivial. Given the statement for k vectors
and orthonormal {w1, . . . , wk} such that

Span ({w1, . . . , wk}) = Span ({v1, . . . , vk}) ,

define

uk+1 = vk+1 −
k

∑
i=1
〈wi, vk+1〉 · wi and wk+1 =

uk+1

‖uk+1‖
.

We can now check that the set {w1, . . . , wk+1} satisfies the required conditions. Unit length
is clear, so let’s check orthogonality:

〈
uk+1, wj

〉
=
〈
vk+1, wj

〉
−

k

∑
i=1
〈wi, vk+1〉 ·

〈
wi, wj

〉
=
〈
vk+1, wj

〉
−
〈
wj, vk+1

〉
= 0.

Corollary 1.4 Every finite dimensional inner product space has an orthonormal basis.
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In fact, Hilbert spaces also have orthonormal bases (which are countable). The existence
of a maximal orthonormal set of vectors can be proved by using Zorn’s lemma. However,
we still need to prove that a maximal orthonormal set is a basis. This follows because we
define the basis slightly differently for a Hilbert space: instead of allowing only finite linear
combinations, we allow infinite ones. The correct way of saying this is that is we still think
of the span as the set of all finite linear combinations, then we only need that for any v ∈ V,
we can get arbitrarily close to v using elements in the span (a converging sequence of finite
sums can get arbitrarily close to its limit). Thus, we only need that the span is dense in the
Hilbert space V. However, if the maximal orthonormal set is not dense, then it is possible
to show that it cannot be maximal. Such a basis is known as a Hilbert basis.

Let V be a finite dimensional inner product space and let {w1, . . . , wn} be an orthonormal
basis for V. Then for any v ∈ V, there exist c1, . . . , cn ∈ F such that v = ∑i ci ·wi. The coef-
ficients ci are often called Fourier coefficients. Using the orthonormality and the properties
of the inner product, we get ci = 〈wi, v〉. This can be used to prove the following

Proposition 1.5 (Parseval’s identity) Let V be a finite dimensional inner product space and let
{w1, . . . , wn} be an orthonormal basis for V. Then, for any u, v ∈ V

〈u, v〉 =
n

∑
i=1
〈u, wi〉 · 〈wi, v〉 .

Proof: Just plug in v = ∑i 〈wi, v〉wi in the left-hand side and distribute out the inner
product.

Let’s consider Rn. If the wi are the “standard basis”, then this is just writing the inner
product 〈u, v〉 in the usual way as the sum of the products of the coordinate values ∑j ujvj

where uj =
〈
u, wj

〉
and vj =

〈
v, wj

〉
. Parseval’s identity says you can do this using any

orthonormal basis you want. Plugging in the case of v = u, we get ‖u‖2 = ∑i u2
i .

2 Adjoint of a linear transformation

Definition 2.1 Let V, W be inner product spaces over the same field F and let ϕ : V → W be a
linear transformation. A transformation ϕ∗ : W → V is called an adjoint of ϕ if

〈w, ϕ(v)〉 = 〈ϕ∗(w), v〉 ∀v ∈ V, w ∈W .

Example 2.2 Let V = Rn and W = Rm with the usual inner product, and let ϕ : V → W be
represented by the matrix A. Then ϕ∗ is represented by the matrix AT. In particular, 〈w, Av〉 =
wT Av = (ATw)Tv =

〈
ATw, v

〉
= 〈ϕ∗(w), v)〉. So, a symmetric matrix is “self-adjoint”.
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Example 2.3 Let V = W = Cn with the inner product 〈u, v〉 = ∑n
i=1 ui · vi. Let ϕ : V → V be

represented by the matrix A. Then ϕ∗ is represented by the matrix AT.

Example 2.4 Let V = C([0, 1], [−1, 1]) with the inner product 〈 f1, f2〉 =
∫ 1

0 f1(x) f2(x)dx,
and let W = C([0, 1/2], [−1, 1]) with the inner product 〈g1, g2〉 =

∫ 1/2
0 g1(x)g2(x)dx. Let

ϕ : V →W be defined as ϕ( f )(x) = f (2x). Then, ϕ∗ : W → V can be defined as

ϕ∗(g)(y) = (1/2) · g(y/2) .

We will prove that every linear transformation has a unique adjoint. However, we first
need the following characterization of linear transformations from an inner product space
V to the field F it is over.

Proposition 2.5 (Riesz Representation Theorem) Let V be a finite-dimensional inner product
space over F and let α : V → F be a linear transformation. Then there exists a unique z ∈ V such
that α(v) = 〈z, v〉 ∀v ∈ V.

We only prove the theorem here for finite-dimensional spaces. However, the theorem
holds for any Hilbert space.

Proof: Let {w1, . . . , wn} be an orthonormal basis for V. Given v, let c1, ..., cn be its Fourier
coefficients, so v = ∑i ciwi, and ci = 〈wi, v〉. Since α is a linear transformation, we must
have α(v) = ∑i ciα(wi) = ∑i 〈wi, v〉 α(wi) = ∑i

〈
α(wi)wi, v

〉
= 〈z, v〉 for z = ∑i α(wi)wi.

This can be used to prove the following:

Proposition 2.6 Let V, W be finite dimensional inner product spaces and let ϕ : V → W be a
linear transformation. Then there exists a unique ϕ∗ : W → V, such that

〈w, ϕ(v)〉 = 〈ϕ∗(w), v〉 ∀v ∈ V, w ∈W .

Proof: For each w ∈W, the map 〈w, ϕ(·)〉 : V → F is a linear transformation (check!) and
hence there exists a unique zw ∈ V satisfying 〈w, ϕ(v)〉 = 〈zw, v〉 ∀v ∈ V. Consider the
map β : W → V defined as β(w) = zw. By definition of β,

〈w, ϕ(v)〉 = 〈β(w), v〉 ∀v ∈ V, w ∈W .

To check that β is linear, we note that ∀v ∈ V, ∀w1, w2 ∈W,

〈β(w1 + w2), v〉 = 〈w1 + w2, ϕ(v)〉 = 〈w1, ϕ(v)〉+ 〈w2, ϕ(v)〉 = 〈β(w1), v〉+ 〈β(w2), v〉 ,

which implies β(w1 + w2) = β(w1) + β(w2). β(c · w) = c · β(w) follows similarly.

Note that the above proof only requires the Riesz representation theorem (to define zw)
and hence also works for Hilbert spaces.
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3 Self-adjoint transformations

Definition 3.1 A linear transformation ϕ : V → V is called self-adjoint if ϕ = ϕ∗. Linear
transformations from a vector space to itself are called linear operators.

Example 3.2 The transformation represented by matrix A ∈ Cn×n is self-adjoint if A = AT.
Such matrices are called Hermitian matrices.

Proposition 3.3 Let V be an inner product space and let ϕ : V → V be a self-adjoint linear
operator. Then

- All eigenvalues of ϕ are real.

- If {w1, . . . , wn} are eigenvectors corresposnding to distinct eigenvalues then they are mutu-
ally orthogonal.
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